LES GRANDS DECOUVREURS
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Le Deal du moment :
Funko POP! Jumbo One Piece Kaido Dragon Form : ...
Voir le deal

Découvertes

Aller en bas

Découvertes Empty Découvertes

Message par Invité Sam 24 Mai - 2:14

Découvertes Albert_Einstein_%28Nobel%29


L’annus mirabilis
1905 est l’année miracle pour Einstein, celle où sont publiés quatre de ses articles dans la revue Annalen der Physik (d’abord envoyés à Conrad Habicht) :
Le premier, publié en mars, expose un point de vue révolutionnaire sur la nature corpusculaire de la lumière, par l’étude de l’effet photoélectrique. Einstein l’a intitulé : Sur un point de vue heuristique concernant la production et la transformation de la lumière. Il y relate ses recherches sur l’origine des émissions de particules, en se basant sur les travaux de Planck qui avait, en 1900, établi une formule d’un rayonnement quantifié, c’est-à-dire discontinu. Planck avait été en fait contraint d’aborder le rayonnement lumineux émis par un corps chaud d’une manière qui le déconcertait : pour mettre en adéquation sa formule et les résultats expérimentaux, il lui avait fallu supposer que le courant de particules se divisait en blocs d’énergie, qu’il appela quanta. Bien qu’il pensât que ces quanta n’avaient pas de véritable existence, sa théorie semblait prometteuse et plusieurs physiciens y travaillèrent. Einstein réinvestit les résultats de Planck pour étudier l’effet photoélectrique, et il conclut en énonçant que la lumière se comportait à la fois comme une onde et à la fois comme un flux de particules. Il mit alors fin à un débat vieux de plus d’un siècle sur la nature de la lumière et ouvrit la voie à des recherches fondamentales. L’effet photoélectrique a donc fourni une confirmation simple de l’hypothèse des quanta de Max Planck. En 1920, les quanta furent appelés les photons.
Deux mois plus tard, en mai, Einstein fait publier un deuxième article sur le mouvement brownien. Il expliquait ce mouvement par une entorse complète au principe d’entropie tel qu’énoncé à la suite des travaux de Newton sur les forces mécaniques : selon lui, les molécules tiraient leur énergie cinétique de la chaleur. Cet article est encore plus fondamental du fait qu’il donnait une preuve théorique (vérifiée expérimentalement par Jean Perrin en 1912) de l’existence des atomes et des molécules. Le mouvement brownien a été expliqué au même moment qu’Einstein par Marian Smoluchowski, et aussi par Louis Bachelier en 1900.
Le troisième article est plus important, car il représente la rupture intuitive d’Einstein avec la physique newtonienne. Dans celui Sur l’électrodynamique des corps en mouvement, le physicien s’attaque au postulat d’un espace et d’un temps absolus, tels que définis par la mécanique de Newton, et à l’existence de l’éther, milieu interstellaire inerte qui devait soutenir la lumière comme l’eau ou l’air soutiennent les ondes sonores dans leurs déplacements. Cet article, publié en juin, amène à deux conclusions : l’éther n’existe pas, et le temps et l’espace sont relatifs. Le nouvel absolu qu’Einstein édifie est maintenant détaché de la nature quantitative de ces deux notions — l’espace et le temps, mais à la conservation de leur relation à travers les différents référentiels d’études. Les conséquences de cette vision révolutionnaire de la physique, qui découle de l’idée qu’Einstein avait de la manière dont les lois physiques devaient contraindre l’univers, ont bousculé tant la physique théorique que ses applications pratiques. L’apport exact d’Einstein par rapport à Henri Poincaré et quelques autres physiciens est aujourd’hui assez disputé (voir Controverse sur la paternité de la relativité).
Le dernier article, publié en septembre, donne au titre L’inertie d’un corps dépend-elle de son contenu en énergie ? une réponse célèbre : la formule d’équivalence masse-énergie. C’est un résultat de la toute nouvelle relativité restreinte, qui sera d’une importance capitale pour un nombre de champs d’études insoupçonnés alors : physique nucléaire, mécanique céleste, jusqu’aux armes et centrales nucléaires.
Durant cette période, il fonde avec Maurice Solovine (qui traduira ses œuvres en français) et Conrad Habicht l’Académie Olympia, cercle de discussion se réunissant au 49, Kramgasse, et organisant des balades en montagne.

Années de reconnaissance (1910-1935)

En 1916 est publiée relativité générale.
La clé de voûte de cette théorie est les « Équations du champ » qui décrivent le comportement du champ de gravitation (la métrique de l’espace-temps) en fonction du contenu énergétique et matériel. Pendant longtemps, on a prétendu que David Hilbert fut le premier à avoir trouvé ces équations (suite à des discussions avec Einstein toutefois)[3]. La théorie de la relativité ainsi que ses ouvrages de 1905 et 1916 forment la base de la physique moderne. La relation entre Einstein et la physique quantique est très remarquable — d’un côté, certaines de ses théories sont la base de la physique quantique, en particulier son explication de l’effet photoélectrique, d’un autre côté, il a refusé beaucoup d’idées et d’interprétations de la mécanique quantique plus tard.
En 1927, invité au cinquième Congrès Solvay, il a de nombreuses conversations avec Niels Bohr à ce sujet. Il dit alors : « Gott würfelt nicht » (« Dieu ne joue pas aux dés ») pour marquer son opposition à l’interprétation probabiliste de la physique quantique, ce à quoi Niels Bohr répondit « Qui êtes-vous Albert Einstein pour dire à Dieu ce qu’il doit faire ? ». Le paradoxe quantique qu’il arrivera à préciser plus tard avec Podolsky et Rosen à Princeton (paradoxe EPR) reste aujourd’hui très important.

La vérification par l’éclipse
Pour vérifier la relativité générale, une mesure de la déviation des rayons lumineux aux alentours d’une masse, lors d’une éclipse solaire est envisagée. La première expédition est programmée en 1915, mais est rendue impossible par la Première Guerre mondiale. En 1919, Arthur Eddington réalise la fameuse mesure. Il annonce que les résultats sont conformes à la théorie d’Einstein. Il apparaît bien plus tard qu’en raison du temps nuageux, la marge d’erreur était bien supérieure au phénomène à mesurer. Stephen Hawking explique dans Une Brève histoire du temps que ce genre de faux bon résultat est courant quand on sait à quoi s’attendre. Comme entre-temps, d’autres mesures avaient confirmé la déviation de la lumière, le prestige de la relativité générale n’en fut pas ébranlé.

Source : Wikipedia

Invité
Invité


Revenir en haut Aller en bas

Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Ne ratez plus aucun deal !
Abonnez-vous pour recevoir par notification une sélection des meilleurs deals chaque jour.
IgnorerAutoriser